

Short barrier plugs

- status on the barrier capacity project

Stein Åtland, Leading Advisor Well integrity P&A, Cessation and legacy wells Equinor

WHY?

- P&A and Slot Recovery cost.
- Assessment of shorter fm creep / cmt intervals
- New P&A solutions
- Potential accumulation of shorter intervals
- Representative field conditions not available in lab.

 What's the barrier capacity of a short length of annulus cement or formation creep?

Test method – Overall principle

Conveyance: DP or Wireline

Sequence:

- 1. Bottom plug
- 2. Lower perforations/cut
- 3. Upper plug
- 4. Upper perforations/cut

Differential pressure applied from above, monitoring below plug.

Success factor: Sensitivity

Factors affecting results

equinor

- 1. Heat transfer from formation to monitoring volume.
- 2. Formation hydraulic interaction.
- 3. Pressurizing plug compression of monitoring volume.
- 4. Clay swelling / shrinking
- 5. Temperature convection within monitoring volume
- 6. Horizontal fluid loss along test interval

Test results

Field	Barrier length	Barrier material	Year
Ve s le frikk	10 m	Formation creep	Q12021
Ve sle frikk	5 m	Formation creep	Q12021
Oseberg	7 m	Formation creep	Q4 20 21
Statfjord	3 m	Cement	Q3 20 22
Field A	4,5 m	Formation creep – Equipment failure	Q3 20 22
Field B	3,5 m	Cement – Equipment failure	Q4 20 23
Field C	3,5	Cement – Leakage observed	Q12024
Field D	5 & 10 m	Cement – heterogeneous	Q3 20 24
Field E	4 m	Formation creep	Q3 20 24
Field F	~5 m	Formation creep	Planned Q4 20 24

6 | Open 23 March 20 23

Cement test $\# 2 - \sim 3.7 \text{ m}$

- Interval selected from preliminary interpretation of the cement bond log.
- Installation process on wireline.
- A significant leak was noticed immediately during the communication test and later an accelerated leak-rate was observed.

Time [sec] 23 March 20 23

Cement test $\# 2 - \sim 3.7 \text{ m}$

equinor

Overview plot with pressure and temperature

- The pressure in the monitoring volume (red) was increasing from the beginning of the test with ~7.5 bar/hr but is also showing a distinct increasing trend after 1hr (at 21:15 with 14 bar increase the following hour).
- Temperature increase in the monitoring volume (orange) during the test is ~0.15 degC and some can be attributed to the pressure increase*
- The pressure above the plug (blue) was stable during the test and no pump strokes was required to maintain pressure.
- The temperature above the plug is shown in purple

8

Open 23 March 20 23

Where are we now!

- Shortening the test length is still favorable for data collection.
- Formation interaction is larger than anticipated.
- Simulation models assist in showing what cases are feasible to detect.

- In order to improve as an industry more data collection and sharing of learning is needed.
- We encourage other operators to invest in this type of testing

QUESTIONS?