When you need to reduce CO2e Gjelder P&A på norsk sokkel

HALLIBURTON

Low CO₂e P&A materials Do we have any ready? Norway PAF 2023

Gunnar Lende, Technical Manager, Cementing Norway Raymundo Perez, Technical Advisor, Cementing Norway

R6 2-October-2023 for venue

Reducing CO₂e - what matters?

Main contributors to CO2e:

- 1. Rig fuel consumption
- 2. Stand-by vessel fuel consumption
- 3. Supply vessel fuel consumption
- 4. Materials manufacturing
- 5. Material logistics fuel consumption
- 6. Chemicals
- 7. Other rig non-well material consumption
- 8. Time use

- Which one is most significant?
- Which one is easiest to reduce?
- Can one affect any of the others?

Examples:

If reduced material CO₂e increases use of rig time, overall CO₂e may go up, not down; or benefit reduced

For remote locations (example Hammerfest) logistics can be >60% of material CO2e

Reducing CO₂e - what matters?

Norway plug job statistics per August 2023:

- All plugs except lost circulation, dump bailer and KOP since 1997
- 7280 hits, 101603 m³, average volume 14 m³
- → saving potential could be up to ±78800 MT
- → Long term accumulated volume of small jobs makes a difference

Reducing CO₂e - what matters – example calculation

Rig time vs plugging material impact on CO₂ emissions

What matters – example calculation

- Rig diesel consumption based on annual average for semi-sub rig operating in Norwegian waters
- No extra allowance for stand-by and supply vessel contributions
- No extra allowance for chemicals, spacers, mud, etc.
- NeoCem E+ NS LT-50 blend at 1,70 sg replaces class G cement at 1,90 sg, 14 m³ job volume
- Typical job times assumed for placing plug in cased hole

Same assumptions as previous slide

Rig emission:	3,4	MT/hour	35	m3 diesel per day	1	
Stand-by boat emission:	0,7	MT/hour	7	m3 diesel per day	1	
Supply boat emission:	0,7	MT/hour	7,5	m3 diesel per day	1/2	vessel per rig day
Sum diesel	4,8	MT/hour	49,5	m3 diesel per day		
Cement CO2e:	1,260	MT/m3		Class G cement (Tananger)		

EXAMPLE JOB CALCULATION		Base case: With 61% saving:		Break-even WO	C 2,2				
Activity	Time (hours)	CO2e (MT)	CO2	2e (%)	CO2e (MT)	CO2	e (%)	CO2e (MT)	CO2e(%)
RIH with DP	6	29,0	17 %	25 %	29,0	18 %	28 %	29,0	25 %
Set mechnical plug	1	4,8	3 %	4 %	4,8	3 %	5 %	4,8	4 %
Circulate, set cement plug, POOH to top cement	5	24,1	14 %	21 %	24,1	15 %	23 %	24,1	21 %
Circulate B/U, cut cement	2	9,7	6%	8 %	9,7	6%	9 %	9,7	8%
WOC, tag	12	57,9	34 %	-	57,9	36 %	-	10,8	9 %
POOH	5	24,1	14 %	21 %	24,1	15 %	23 %	24,1	21 %
Pressure test	1	4,8	3 %	4 %	4,8	3 %	5 %	4,8	4%
Contribution, 14 m3 cement (MT)	14	17,6	10 %	15 %	6,9	4 %	7%	6,9	6 %
SUM CO2e	32	172	100 %	100 %	161	100 %	100 %	(114)	100 %
SUM CO2e - no WOC	20	(114)	WOC	No WOC	103	WOC	No WOC	103	2,2 WOC

Can low CO2e solutions be used for P&A?

Technically – what does it provide?

- ✓ Lower CO2 footprint
- ✓ NORSOK D010 r2021 compliant
- ✓ No need for use of silica flour for high temperature
- ✓ No need for expansion agent (inherent expansion)
- ✓ Eliminate need for Microsilica Liquid or Gascon
- ✓ Control with ordinary additives
- ✓ RCS = 0,57% as per EN-481 \rightarrow H373 (Norway)
- Good CO2 resistance seen so far

"It" for Norway now:

NeoCem E+ NS LT-50

- ✓ We have it in stock!
- ✓ We know how to use it!

Table 26 - Well barrier material requirements

	1	— Wen barrier material requirements
Item	Property	Requirement
a.	Long term integrity 12 months 150°C	Key integrity indicators like compressive and tensile strength, permeability and Young's Modulus should when measured over longer period, not indicate a deteriorating long-term trend. If such a trend is observed the test should continue to determine the final stable value.
b.	Permeability < 5 μD	Water permeability smaller or equal to 5 μ D, or smaller or equal to 1000 times the formation permeability whichever is greatest. Alternatively, the zonal isolation material shall as a minimum have a combined permeability and length such that its ability to prevent fluid migration is as good or better than the cap rock it replaces.
c.	Radial shrinkage	For OH plugs / OH annular WBEs: low shrinkage.
	> 0,25 % expansion	For internal, cased hole WBEs: long-term positive linear expansion.
d.	Mechanical loads Competitive properties	For WBEs exposed to loads outside relevant knowledge /experience envelopes (examples: geothermal, injection, high depletion, high pressure tests etc.), FEA (Finite Element Analysis) analysis should be performed and a 40 % safety factor in each individual load case should be achieved.
e.	Chemical stability Good	Withstand exposure to chemicals or substances that can exist without substantially affecting required integrity. Examples: H_2S , CO_2 , H_2O , brines, hydrocarbons
f.	Bonding to tubulars Good	Shall bond properly to uncoated and de-greased steel or other tubulars in contact with it where bonding is required. If bonding cannot be achieved, the material shall be proven to have a compensating mechanism, such as expansion, that provides a hydraulic seal to casing and any exposed formation in contact with it.
g.	Effect on tubular integrity None	Shall not detrimentally affect properties of tubulars in contact with barrier material.

HALLIBURTON

Approved by SWIPA

by SWIPA **Swipa**

Can low CO2e solutions be used for P&A?

SWIPA plug leak test comparison NOTE: unpublished & temporary data

Leak test of 400 mm long plug in 5" pipe
NeoCem E+ NS outperforms OPC
NeoCem E+ NS outperforms expanding OPC

without using any expansion additive

Geopolymer also outperforms expanding OPC

(low expansion ratio),

Note: expansion can be tuned in any of these

Can low CO2e solutions be used for P&A?

SWIPA plug leak test comparison NOTE: unpublished & temporary data

Leak test of 400 mm long plug in 5" pipe
NeoCem E+ NS outperforms OPC
NeoCem E+ NS outperforms expanding OPC
(low expansion ratio),
without using any expansion additive

Note: expansion can be tuned in any of these

Geopolymer also outperforms expanding OPC

Can low CO2e solutions be used for P&A?

Performance experience

So far (August 2023) we have done 26 plug jobs with the Halliburton low CO2e blend, with 384 m³ pumped

No operational problems encountered

10 jobs tagged, average WOCT 12 hours, shortest 6 hours

5 jobs pressure tested, average WOCT 13 hours

Lowest UBHST 10°C, highest 145°C

Job category	Job category count	Job category volume (m3)	Average UBI	HST (°C) Average BHCT (°C)
Pilot hole plug	9	103	36	21
Surface Plug	6	72	19	17
CH plug	1	16	21	18
OH plug	9	145	82	62
BHKA OH plug	1	48	125	90

Totally ±3700 m³ / 3700 MT pumped (all job types)

Conclusion: Yes they can be used and can match performance of OPC when temperature is sufficient

THANK YOU

For more information contact Gunnar Lende,

Gunnar.lende@halliburton.com

+47 918 60 464

We acknowledge our customers for making this possible:

ConocoPhillips Norway

Aker BP

